rammat- el o SEREa R ot eed

Marie-Claude Coté

Département de mathématiques appliquées et génie industriel,
Ecole Polytechnique de Montréal, Montréal, Canada
Interuniversity Research Center on Enterprise Networks, Logistics and Transportation,
Montréal, Canada {macoteQcirrelt.ca}

Bernard Gendron
Département d’informatique et de recherche opérationnelle, Université de Montréal, Montréal, Canada
Interuniversity Research Center on Enterprise Networks, Logistics and Transportation,
Montréal, Canada {bernard@cirrelt.ca}

Louis-Martin Rousseau
Département de mathématiques appliquées et génie industriel,
Ecole Polytechnique de Montréal, Montréal, Canada
Interuniversity Research Center on Enterprise Networks, Logistics and Transportation,
Montréal, Canada {louism@cirrelt.ca}

We present a branch-and-price algorithm to solve personalized multi-activity shift scheduling
problems. The subproblems in the column generation method are formulated using grammars
and solved with dynamic programming. The expressiveness of context-free grammars is
exploited to easily model restrictions over shifts, allowing the branch-and-price algorithm to
solve large-scale problem instances. We present computational experiments on two types of
multi-activity shift scheduling problems and compare our approach with existing methods
in the literature. These experiments show that our approach can solve efficiently large-scale

instances and is flexible enough to model different classes of problems.

Key words: shift scheduling, context-free grammars, column generation, branch-and-price.

1. Introduction

The task of scheduling personnel is, for many organizations, significant and complex. The
size of the organization and the variety of the constraints arising from different aspects of
the problem make it challenging to create an optimal schedule by hand. Several papers
in the literature have addressed personnel scheduling problems. Some of these papers are
dedicated to shift scheduling, a particular class of problems that deal with the assignment of
work-activities, interspersed with breaks and meals, to a set of employees. Very few papers

study shift scheduling problems where several work-activities must be scheduled and where

employees have different characteristics, notably, in the work-activities they can perform
and in their availability. In most real-world shift scheduling problems, these aspects are
present. In this paper, we study a class of shift scheduling problems that allow multiple
work-activities and deal with non identical employees.

We define the personalized multi-activity shift scheduling problem as follows. Given a
planning horizon I divided into n periods of equal length and a set of work-activities J, a
shift is defined by its starting and ending times and by an assignment of work and rest-
activities, such as breaks, to each period. Given a set of employees E, a set of feasible
shifts €2¢ for each employee e € F, and a number of employees b;; required at each period
1 € I for each work-activity 7 € J, one must select for each employee e € E a feasible
shift in Q¢ to cover the required number of employees at minimum cost, given that each
feasible shift s € €2 has an associated cost ¢ > 0. We assume that the employees have
different characteristics from one another, such as skills that allow them to perform only a
subset of work-activities, or restrictions regarding their availability during some periods of
the planning horizon. The set of feasible shifts for each employee is therefore determined
by the skills, preferences and availability of each employee, but is also constrained by other
rules arising from work regulation agreements and ergonomic considerations. This problem
differs from the multi-activity shift scheduling problem studied in Coté et al. (2010), where
all employees are assumed to be identical.

The classical set covering model, proposed in Dantzig (1954) for the shift scheduling
problem first described in Edie (1954), can easily be adapted to the personalized multi-
activity shift scheduling problem to obtain model D:

f(D)=min)Y > cfat

ecFE see
> 0755 = bij, Viel, jel, (1)
ecE sefle
> at=1, Ve € E, 2)
seqe
x¢ € {0,1} Ve € E,s € Q°, (3)

where 07,

= 1 if work-activity j € J is assigned to period i € I in shift s € 2°, and variable
x¢ =1 if employee e is assigned to shift s € 2°. The number of variables in model D grows
rapidly with the number of employees and the number of feasible shifts per employee, which

makes impractical to solve the model by generating all feasible shifts a priori.

In this paper, we present a column generation approach for solving model D, where the
pricing subproblem is modeled by using a context-free grammar that allows to extract the set
of feasible shifts for each employee. The pricing subproblem is solved efficiently by a dynamic
programming algorithm performed on a directed acyclic graph obtained from the context-free
grammar. This column generation method is embedded within a branch-and-price (B&P)
algorithm that can solve large-scale problem instances to near optimality. We show that
this algorithm is competitive with other methods from the literature, while allowing enough
flexibility to address a variety of multi-activity shift scheduling problems.

The paper is organized as follows. In Section 2, we present a literature review on shift
scheduling problems and we introduce grammar theory. In Section 3, we present our solution
approach, including the grammar-based pricing subproblem and the branching rule used in
the B&P algorithm. In Section 4, we present comparative computational results on two

types of multi-activity shift scheduling problems presented in the literature.

2. Background Material

In this section, we present a literature review on models and methods for shift scheduling
problems,; in particular multi-activity shift scheduling problems. We then provide a brief
introduction to context-free grammars, describing only the concepts that are relevant to the

present work.

2.1. Literature Review

The literature on personnel scheduling distinguishes two problems: shift scheduling and tour
scheduling. In shift scheduling problems, one is interested in determining the assignment of
employees to one or more work-activities, interspersed with breaks and meals, typically over
a one-day planning horizon. In tour scheduling problems, complete schedules over several
days have to be determined. Loucks and Jacobs (1991) and Ritzman et al. (1976) model
the tour scheduling problem with assignment variables specifying the number of employees
assigned to a given activity at any given time. Since such modeling approaches yield very
large integer programming (IP) formulations, both papers propose heuristic methods. These
models do not allow to place breaks or meals during the shifts, nor do they handle regula-
tions concerning the transition between activities. The rest of this section focuses on shift

scheduling problems and distinguishes between mathematical programming approaches and

constraint programming methods based on formal languages.

Mathematical programming models and approaches. For shift scheduling problems,
two types of IP models, explicit and implicit, are considered in the literature. In an explicit
model, one obtains the schedule for each employee simply by scanning the optimal solution,
i.e., in a time linear to the model size; the classical set covering formulation D is an example
of an explicit model. In an implicit model, a post-processing algorithm, typically efficient,
but not linear in the model size, must be called upon in order to derive the schedule for each
employee. The literature also distinguishes whether the problem has only one work-activity
or multiple work-activities. In a single-activity shift scheduling problem, one only specifies,
at each period, if an employee is working or not. In a multi-activity shift scheduling problem,
there are several work-activities and whenever an employee is working at a given period, it
is further necessary to specify which work-activity is assigned to that employee.

Problems involving a single work-activity and identical employees have been studied and
efficiently solved to optimality using implicit models such as the ones suggested in Bechtolds
and Jacobs (1990), Aykin (1996) and Rekik et al. (2004). Implicit models have much less
variables than the explicit set covering model (i.e., model D with |J| = 1), since the latter
counts one variable per feasible shift, while the former uses variables for types of shifts and
types of breaks. Implicit models are limited in terms of the rules over shifts they can handle;
in particular, we are aware of only one implicit model, the grammar-based model proposed in
Coté et al. (2010), that can represent multi-activity shift scheduling problems. By contrast,
the explicit set covering model (i.e., model D with an arbitrary set .J) includes that case as
well.

As mentioned above, the set covering model also has its limitations, since when the
number of employees and the number of feasible shifts grow, the model can rapidly become
intractable, unless a column generation approach, first introduced in Dantzig and Wolfe
(1960), is used. Column generation is based on the idea that optimal solutions to large
linear programs can be obtained without explicitly including all the columns (variables). The
relevant columns can be generated dynamically by solving a so-called pricing subproblem
(see for instance Desaulniers et al. (2005) and Liibbecke and Desrosiers (2005) and references
therein for more details about column generation).

Up until now, very few papers addressed personalized multi-activity shift scheduling

problems. Demassey et al. (2006) study a multi-activity shift scheduling problem on a 24-

4

hour planning horizon involving up to ten work-activities. The set covering model is handled
with a column generation approach in which the pricing subproblem is solved with constraint
programming. This method succeeds in finding optimal integer solutions for some instances
involving up to three work-activities, but not for larger instances. Lequy et al. (2009)
consider a personalized muti-activity shift scheduling problem where shifts and breaks are
fixed a priori. This paper describes two IP models and a column generation approach based
on multicommodity flow formulations. These approaches can deal with small instances.
To solve large-scale instances, a rolling horizon heuristic based on column generation (first
studied in Omari (2002), Vatri (2001) and Bouchard (2004)) is used. In our computational
experiments reported in Section 4, we will use the problem definitions and the instances from
Demassey et al. (2006) and Lequy et al. (2009).

Formal languages have been used to derive IP models for multi-activity shift scheduling
problems. Coté et al. (2011) propose two explicit IP models based on formal languages. Both
models make use of assignment variables yf; indicating whether or not employee e is assigned
to activity j € J at period ¢ € I. One IP model is based on a regular language represented
by a finite deterministic automaton that allows to encapsulate the constraints defining each
feasible shift using a network flow formulation. Another IP model makes use of a context-
free grammar that describes all feasible shifts for each employee. These models can handle
personalized shift scheduling instances, but since they generate a large number of variables,
they can only solve instances with few work-activities. In addition, in the case where many
employees are alike, these models have symmetry issues. To deal with these performance
issues, an implicit IP model based on context-free grammars was suggested in Coté et al.
(2010) for multi-activity shift scheduling problems where all employees are identical. This
model makes use of assignment variables y;; indicating the number of employees assigned to
activity j € J at period ¢ € I. To the best of our knowledge, this model is the first to solve
efficiently large-scale multi-activity problem instances with up to ten work-activities, but it
cannot be extended to personalized multi-activity problem instances. The present work is an
attempt to fill this gap. Although we also use context-free grammars as in Coté et al. (2011)
and Coté et al. (2010), our work differs significantly since we use the set covering model
instead of models based on assignment variables. Moreover, we solve the pricing subproblem
with a specialized dynamic programming algorithm; an alternative, tested in preliminary
experiments and shown to be inferior, would consist in solving the pricing subproblem as

an IP model similar to the one presented in Coté et al. (2011). Finally, instead of using a

state-of-the-art IP software package to derive integer solutions, as in Coté et al. (2011) and

Coté et al. (2010), we develop our own B&P implementation.

Constraint programming approaches based on formal languages. The idea of using
formal languages to derive IP formulations was first inspired by constraint programming. As
mentionned above, Demassey et al. (2006) use a constraint programming column generation
subproblem to generate feasible shifts for a shift scheduling problem. The subproblem is
modeled in part using an automaton and is solved by constraint programming techniques.
Menana and Demassey (2009) use an automaton with additional constraints ensuring cu-
mulative costs and succeed in finding the lowest cost schedule for one employee for up to
50 work-activities. Kadioglu and Sellmann (2010) use a context-free grammar to model a
simplified version of the problem presented in Demassey et al. (2006), where the objective
is to minimize the number of employees. They present an incremental arc-consistency al-
gorithm for context-free grammars and find optimal solutions for instances with one and
two work-activities in an average time of 9 seconds. Quimper and Rousseau (2010) suggest
two ways to model the rules of the problem presented in Demassey et al. (2006): an ex-
panded automaton and a context-free grammar, both including all the constraints over the
composition of a shift. They then present neighborhood operators for both approaches for
use in large neighborhood search heuristic methods. These approaches return near optimal
solutions for one-activity instances and scale well on large instances containing up to ten
work-activities.

Quimper and Rousseau (2010) also compared the interest of using either an expanded
automaton or a context-free grammar to model the constraints in the composition of multi-
activity shifts. As a general rule, they observed that the graph associated with the context-
free grammar is of smaller size than the associated expanded automaton. They also point

out that the scheduling rules are generally easier to model with a context-free grammar.

2.2. Definitions

Grammars, words and languages. A context-free grammar G is characterized by a tuple

(3, N, P, S) where:
e Y is an alphabet containing letters (a, b, ¢, ...), also called terminal symbols;
e N is a set of non-terminal symbols (A, B, C,...);

6

e P is a set of productions of the form X — «, where X € N and « is a sequence of

terminal and/or non-terminal symbols.
e S is the starting non-terminal.

A sequence of letters from alphabet X, called a word, is recognized by grammar G if it can
be generated by successive applications of productions from G, starting with non-terminal
S. The set of words recognized by a grammar is called a language.

In the following, we will use the term grammar to refer to a context-free grammar and
we will assume that, except when specified otherwise, all grammars are in Chomsky normal
form, meaning that all productions are of the form X — a where X € N and a € (N xN)UX.
Note that this assumption is not restrictive since any context-free grammar can be converted
to Chomsky normal form; we note, however, that such a conversion increases the size of the
grammar, although in our case studies, reported in Section 4, we observe moderate increases
in the size of the grammars when performing the conversion to Chomsky normal form. We

refer to Hopcroft et al. (2001) for more information on formal languages.

Example 1 The following grammar G defines all feasible shifts for a simple multi-activity
shift scheduling problem. A shift must have a duration equal to the planning horizon and
contain one break of one period anywhere during the shift except at the first or the last
period. The problem contains two work-activities represented by letters j1 and jo and break
periods are represented by letter b. A break is mandatory to change from one work-activity
to another.

G=(X=1,7J2,0), N = (S, X,W,B, Jy, o), P,S), where P is:

S—-WX, X — BW,

W — S \ oo | 1 ’ J2;

J1— JiJy \ J1;

Jo — JaJy \ J2;

B —b,

where the symbol | specifies a choice of production. Assuming that the planning horizon
has a duration of 4 periods, then the shifts ji1bj1j1, j2j2071 and jibjaje, among others, are
recognized by G, while j1bj17jo is not. Word j1bj272 is obtained by the derivation shown in
Table 1, where P is the production used and CS is the current sequence, obtained from the

previous sequence by applying the production on the left side.

P CS

— S
S—-WX WX

X —BW WBW
W — JQJQ WBJ2J2
W = By
B —b jleQJQ
Jo — Jo J1bjaJo
Ja — Ja J1bj2j2

Table 1: Derivation of word j;bj272 from grammar G of Example 1

()
OO

Figure 1: Parse tree for word j1bjojo derived from grammar G of Example 1

Parse Trees. Any given word recognized by a grammar can be represented by a so-called
parse tree for which the root node is associated with the starting non-terminal S and the
leaves correspond to letters from > that form a word when listed from left to right. In a parse
tree, the productions are represented as follows: an interior node represents a non-terminal
on the left hand side of a production and its children are the non-terminals or the letters on
the right hand side of the production. Figure 1 shows the parse tree associated with word

J1bjajo derived from grammar G of Example 1.

Grammar DAG. Quimper and Walsh (2007) suggest a way to generate a directed acyclic
graph (DAG) embedding every parse tree corresponding to a word of length n recognized
by a given grammar. The resulting DAG has two types of nodes: the or-nodes and the and-
nodes. An or-node, associated with a non-terminal X, a position ¢ and a length [, is the root
of all the parse trees derived from X and giving a subsequence of length [starting at position
7. An and-node represents a production starting with the non-terminal associated with its
parent and resulting in a subsequence of length [starting at position i. Thus, any path
in this DAG from the root-node to the leaves alternates between or-nodes and and-nodes.
To derive any parse tree from the DAG, we start at the root-node. We visit an or-node
by selecting exactly one child, which is necessarily an and-node. We visit an and-node by
choosing all its children (exactly two if [> 1, one otherwise). By traversing the DAG in this
way until the only remaining unvisited nodes are leaves, we obtain a parse tree associated
to the word defined by the leaves. Conversely, starting from a given word w, we can traverse
the DAG backwards in a straightforward way to derive the parse tree associated to w. In
practice, the DAG is built by a procedure suggested in Quimper and Walsh (2007) inspired
by an algorithm from Cooke, Younger, and Kasami (see Hopcroft et al. (2001)).

Figure 2 is the DAG derived from grammar G from Example 1 on words of length 4.
The or-nodes are labeled O} where 7 is a non-terminal or a letter associated with the node,

while ¢ and [are, respectively, the starting position and the length of the subsequence it

produces. Usually, an and-node is labeled Ag’t, where II is a production X — «, ¢ and [
are, respectively, the starting position and the length of the subsequence generated from this
production, and there is an index t for each such possible subsequence. To avoid overloading
the figure, we did not label the and-nodes, which are simply illustrated with black dots, since
it is easy to deduce the productions they represent from their parent and children nodes. For

instance, the and-node having O as parent and O;} and O3} as children would be labeled
AW—>J1J171
12 .

3. Grammar-Based Column Generation Approach

In this section, we present the main ingredients of our grammar-based B&P algorithm,
namely the restricted master problem and the pricing subproblem solved at each iteration
of the column generation approach, as well as the branching rule used to produce integer

solutions.

Figure 2: DAG for grammar G from Example 1 on words of length 4

3.1. Restricted Master Problem

At every node of the B&P tree, we solve the linear programming (LP) relaxations of a
sequence of restrictions of model D, called the restricted master problems. Conceptually,
each restriction is defined by allowing only a subset of the feasible shifts Q¢ C Q¢ for each
employee e € E. The sequence of restrictions is obtained by gradually enlarging the subsets
of feasible shifts, which yields a sequence of non-increasing values that converges towards the
optimal LP relaxation of the node. More precisely, at each iteration of the column generation
method, we solve the current restricted master problem and then look for negative reduced
cost columns, i.e., shifts in Qe\Qe such that ¢ < 0 for each employee e € E; these columns can
be obtained by solving the pricing subproblem, which is described in the next subsection. If
no negative reduced cost columns can be generated, the current restricted master problem is
optimal and we have computed the LP relaxation of the node by generating only a (typically
small) subset of the feasible shifts.

The restricted master problem, called RM P, solved at every iteration of the column

10

generation method performed at each node of the B&P tree, takes the following form:

eck seqNe
D> 05 > by, Viel,jeJ, (4)
eck 565‘5
Z xz = 17 Ve € E, (5)
seQe
x>0 Ve e E,s e Q°. (6)

To define each node of the B&P tree, we forbid some shifts to be assigned to a particular
employee, as described in Subsection 3.3. Conceptually, this simply amounts to define the
restricted subsets associated to that employee in such a way as to remove the corresponding
forbidden shifts (in practice, however, we will associate a very large cost to these forbidden
shifts, as seen in Subsection 3.3). Thus, the restricted master problems at every node of the
B&P tree always take the above form and no additional constraints are needed to capture

the branching rules that define the node.

3.2. Pricing Subproblem

To generate new columns to be included to the current RM P, we solve one subproblem for
each employee, based on the DAG described in Section 2.2. For each employee ¢ € E,| we
generate a grammar G, that represents the shifts employee e can perform, according to the
employee’s skills, preferences and availability, and considering also general work regulations
that apply to all employees. From this grammar, we generate the associated DAG that will
be used to solve the pricing subproblem for employee e.

For the current RM P, let \;; > 0 be the dual variable associated with each constraint of
type (4) and o° represents the (unrestricted) dual variable associated with each constraint
of type (5). For the sake of clarity, we assume that the cost per shift can be decomposed by
period and by work-activity as follows: ¢ = > ic; 3oje e 07;,¢f;, where Jf is the set of work-
activities employee e can perform at period ¢ and c; is the cost for employee e to perform
work-activity j at period i. At the end of this subsection, we discuss how we can generalize
our approach to other, more realistic, cost structures. The reduced cost of column s € Q¢ is
then:

e = Z Z (¢ — Nij) 055 — 0° Ve c E,s € Q°. (7)

icl jeJe

11

To solve the pricing subproblem for employee e, we associate a cost to each node of the
DAG. To each leaf corresponding to a work-activity j at period ¢, we initialize its cost k;;
to ¢f; — Ajj. The other nodes of the graph have their cost initialized to zero. We solve
each subproblem by a dynamic programming algorithm suggested in Katsirelos et al. (2008),
Quimper and Rousseau (2010) and Kadioglu and Sellmann (2010) to find a minimum cost
parse tree in a grammar-based DAG. The algorithm traverses the DAG from the leaves to the
root by summing up the children of the and-nodes and by choosing the lowest cost children
of an or-node (see the updating formulae below). As a result, every child of the root node
with a negative value represents a negative reduced cost column that can be added to RM P.
If no such child exists in any of the employee subproblems, no negative reduced cost column
can be generated and the current RM P solution is the optimal LP solution.

To present the dynamic programming updating formulae, we use the notations introduced
in Section 2.2 to refer to the or-nodes and the and-nodes of the DAG. Let costo(IN) and
costA(N) be, respectively, the costs associated to or-node O(NV) and to and-node A(N); also,
let ch(N) be the children of or-node N. We then update the costs according to the following

formulae:

costo(O}) = {lgm if j € Jf,

otherwise,
costo(0])) = min {costA(Ag’k)} : [>1, (9)
AlpFech(or)
I1:B—j,1 j
cost4(A;) = costo(O}), (10)
cost A(ATETEPHRY = costo(05) + costo(Of . 1—x), [>1, (11)

where B, C, D are non-terminal symbols of the grammar, C' corresponding to a subsequence
of length k < .

Note that the assumption restricting the cost to be ¢§ = 32,1 37 e je 05;,¢7; is not necessary

i75Cij
for our algorithm to work, as we could have cost on any node of the DAG associated to
the grammar. For instance, a cost could be assigned to every and-node associated with a
production, representing a transition cost between different work-activities. In the dynamic
programming algorithm, these and-nodes would be initialized to this transition cost and this

cost would be added to the total cost of the node, when processed.

12

3.3. Branching Rule

Since the optimal solution to the final RM P at any node of the B&P tree is likely to be
fractional, we need to perform branching in order to find an optimal IP solution to model D.
Branching on individual x¢ variables by generating the two nodes x¢ = 1 and x¢ = 0 is not
a good idea: while the former node is easily dealt with, the latter cannot be easily handled
in the pricing subproblem. Therefore, we must develop another type of branching rule that
not only eliminates the current fractional solution, but that can also be easily processed by
the dynamic programming algorithm used to solve the pricing subproblem.

We suggest the following rule, adapted from the B&P algorithm of Barnhart et al. (2000)
for solving integer multicommodity flow problems. First, we select an employee €’ such
that there exists at least two associated variables having fractional values in the optimal
LP solution. For employee €', we select the two shifts s¢' (1) and s¢(2) corresponding to the
associated variables with the highest fractional values. We then identify the first divergent
position, meaning the first period at which shifts s¢ (1) and s¢ (2) differ in terms of their work-
activities. If we denote by 4’ the first divergent position and by j(1) and j(2), respectively,
the two work-activities assigned to s¢ (1) and s¢(2) at period i, we then generate a partition
of J¢ into two subsets J¢ (1) and J¢ (2) such that j(I) € JS (1), for I = 1,2. Apart from this
rule involving 5(1) and j(2), the other work-activities in .J§ are included arbitrarily in one
of the two subsets, but in such a way that both subsets have the same number of elements
(up to a difference of one). Finally, we generate two nodes in the B&P tree: each one forbids
solutions where employee ¢’ performs a work-activity in J¢ (1) at period ¢, for I = 1,2. Note
that Jf//, the set of work-activities employee ¢’ can perform at period 7/, can vary from one
B&P node to another according to branching decisions taken higher up in the tree.

This rule ensures a well-balanced tree and can be easily handled in both the restricted
master problems and the pricing subproblems. Indeed, it suffices to assign a very large
value to the cost cf,'j associated to forbidden work-activities j € J¢ (1), for [= 1,2. This
will effectively remove the corresponding shifts from RM P, thus eliminating the current
fractional solution. When solving the pricing subproblem for employee €', this modification
corresponds to assigning a very large cost to each leaf representing position " and work-
activities j € Jg (1), for [= 1,2, which ensures that these leaves will not be selected by the
dynamic programming algorithm.

In many problem instances, the beginning of the shifts, the shift lengths and the breaks

13

are not fixed a priori. In this case, the activities at the divergent position are not necessarily
work-activities, but can also be rest-activities (rest, breaks or meals). The branching scheme
must then be adapted by simply adding the rest-activities to the set of work-activities, so
that large cost values can be assigned to the corresponding forbidden rest-activities, in both

the restricted master problem and the pricing subproblem.

4. Computational Experiments

In this section, we compare our grammar-based B&P algorithm with existing methods,
using the problem definitions and the instances from Demassey et al. (2006) and Lequy
et al. (2009). For the two classes of problems, we describe the problem and the associated
grammars, and we provide computational results comparing our approach with available
results in the literature. The experiments on our B&P code were performed (in sequential)
on a two-processor quad-core intel Xeon 2.4GHz with 48 GB RAM. To solve the restricted
master problems, we use the barrier method in CPLEX 11.2, with all parameters kept at
their default values. The branching rule and the column generation method at each node
of the B&P tree, including the dynamic programming algorithm, are implemented in C++
and embedded in a B&P algorithm using the OOBB framework from Crainic et al. (2009).

4.1. Problem Instances From Demassey et al. (2006)

This section presents a shift scheduling problem for a retail store, allowing up to ten differ-
ent work-activities. For each number of work-activities (1 to 10), ten instances are available.
They differ in their demand curves, number of employees and costs. All employees are as-
sumed to be identical; although our algorithm is specifically designed for personalized shift
scheduling problems, it is important to show that it can be easily adapted to the case of
identical employees, and still remain competitive with existing methods even in that case.
We present the specifications of the problem and then compare our approach to the column
generation method from Demassey et al. (2006) and to the formal language based models

from Coté et al. (2011) and Coté et al. (2010) tested on these problem instances.

Problem Definition

Given:
e a 24-hour planning horizon divided into 15-minute periods;

14

e for each work-activity and each period:

— the required number of employees;
— unit undercovering and overcovering costs;

— a cost to perform the work-activity at the given period;
e the number of employees;

the problem is to assign one shift to each employee such that:

e a shift may start at any period of the day allowing enough time to complete its duration

during the planning horizon;
e a shift must cover between 3 hours and 8 hours of work-activities;

e if a shift covers at least 6 hours of work-activities, it must have two 15-minute breaks

and a lunch break of 1 hour;

e if a shift covers less than 6 hours of work-activities, it must have one 15-minute break,

but no lunch;
e if performed, the duration of a work-activity is at least 1 hour (4 consecutive periods);
e a break (or a lunch) is necessary between two different work-activities;

e work-activities must be inserted between breaks, lunch and rest stretches;
while minimizing;:
e the total cost of the assigned shifts (the cost of a shift is the sum over all periods of

the costs of all work-activities performed in this shift) and

e the total overcovering and undercovering costs.

Adapting the Solution Approach. Although all employees are identical, we could solve
the above problem directly as a personalized multi-activity shift scheduling problem with
our B&P algorithm. The performance of the algorithm would be seriously impaired for
instances with a large number of employees. We therefore adapt our solution approach to

address this issue. At the root node, we define a different restricted master problem, RM P’,

15

that aggregates employees instead of considering each of them individually. More specifically,
we define € to be the set of feasible shifts for any employee and 4;; = 1 if work-activity j
is assigned to period ¢ in shift s €). Each variable z; of the aggregated model represents
the number of employees assigned to shift s € €2. Finally, we introduce Q C Q the subset of
allowed feasible shifts in RM P’, which is defined as follows:
f(RMP') = min Z(Z Z 077Cij)Ts + Z Z(c;;s;; + ¢;;555)
scq i€l jeJ iel jeJ
Zéfjxs—s;;—i—s[j:bij, Viel,jeld, (12)
seQ
S, =|E, (13)

s€Q

x5 >0, Vs € Q, (14)
st s >0, Viel,jeld (15)

where | £ | is the number of employees and c¢;;, c;; and ¢;; are, respectively, the cost, the unit
overcovering cost and the unit undercovering cost associated to work-activity j at period <.
Variables sjj and s;; correspond, respectively, to the number of employees overcovering or
undercovering the demand for work-activity j at period i. A similar model is used in the
column generation approach of Demassey et al. (2006).

At the root node of the B&P tree, every iteration of the column generation method first
consists in solving RM P" and then in searching for negative reduced cost columns by a
single application of the dynamic programming algorithm of Section 3.2. At other nodes of
the B&P tree, every iteration of the column generation approach proceeds as described in
Section 3, using the restricted master problems of the form RM P, which are initialized by
simply copying for each employee the set of columns generated at the root node. Observe
that this approach differs significantly from the column generation algorithm in Demassey
et al. (2006) which uses aggregated restricted master problems throughout the whole solution
process.

Note that another way to deal with identical employees is to use symmetry breaking con-
straints in the model. However, this approach is difficult to track within a column generation
framework. Also, to our knowledge, symmetry breaking during search (Gent et al. (2006))

was never adapted to IP solvers.

Definition of the Grammar. The following presents the grammar used for this problem.

16

Table 2: Average grammar (| G |) and DAG (NbNodes) sizes for the problem instances from
Demassey et al. (2006) (10 per class defined by the number of activities, NbA)

NbA |G| NbNodes

1 28 24529
2 31 42968
3 34 67021
4 37 80006
5 40 96308
6 43 117019
7 46 129754
8 49 136466
9 52 148792
10 %) 170208

For the sake of clarity, the grammar is not stated in Chomsky normal form.

G=%X=(a; VjeJr),N=(S,F,HW,A; Vje J B,L R),P,S),

where a; is a period assigned to work-activity j € J and r is a period assigned to any rest-
activity (rest, lunch or break). In P, defined as follows, the notation —min,maz] 15 used to
restrict the subsequences generated with a given production to have a length between min

and max periods:

S — RFR|FR|RF|RHR| HR| HP B—r
F —303 WBWLWBW | WLWBWBW | WBWBWLW L — rrrr
H —[13,24] W BW R — Rr | r

W —uey A VieJ
Aj—>AjCLj’CLj VJEJ
For each class of ten instances characterized by the number of activities, NbA, Table 2
presents the average size of the grammar in Chomsky normal form, namely | G |, the number

of productions in a grammar G and NbNodes, the number of nodes in the corresponding
DAG.

Computational Results. We first compare our approach on the instances described above
with the results reported in Demassey et al. (2006). Experiments in Demassey et al. (2006)
were run on an Opteron 250. Table 3 presents average statistics on the ten classes of instances

(a class of instances contains the ten instances with the same number of work-activities).

17

NbA is the number of work-activities in the class of instances. The Root node columns display
Time(s), Nblts and NbCols, respectively, the CPU time in seconds, the number of column
generation iterations and the number of columns generated to solve the LP relaxation at the
root node. In bold are the average times for classes of instances for which our approach is
strictly faster at the root node. The Branch-and-Price columns show the following statistics:
NbS(0.01%), the number of instances (out of ten) solved within a 0.01% relative gap (i.e.,
Gap = 100(Z*—ZY)/Z* where Z* and Z' are, respectively, the best upper and lower bounds)
within a CPU time limit of 2 hours; Time(s), the average CPU times for the instances solved
within a 0.01% relative gap; NbS(1%), the number of instances solved within a 1% relative
gap within a CPU time limit of 2 hours. Note that Demassey et al. (2006) do not report any
gaps. In bold are the classes of instances for which the number of instances solved within a
0.01% relative gap is strictly higher with our approach.

The Root node columns are a good indication of the performance of the subproblems.
These results clearly show that our algorithm can solve the root node LP relaxation faster,
in fewer iterations and with less columns than the method of Demassey et al. (2006). In ad-
dition, as demonstrated by the Brnach-and-Price columns, our branching rule also performs
better on these instances, allowing our B&P algorithm to solve to near optimality instances
with up to ten work-activities within 2 hours of CPU time. We observe that for the majority
of the 46 instances that are not solved to the 0.01% gap tolerance, the gaps are quite small
at the end of the 2h CPU time limit. Indeed, 36 instances have a gap between 0.01% and
1% at the end of the time limit.

The next table compares our B&P algorithm to other approaches based on formal lan-
guages. Table 4 displays the CPU times for the one- and two-activity instances (ten in each
class, No. being the instance number) for the explicit formulations from Coté et al. (2011)
based on automata (IP R M) and grammars (IP G M), for the implicit grammar-based
model (/G M) from Co6té et al. (2010), and for our B&P algorithm (G-B CG). The CPU
times (in seconds) are the times to reach a 1% relative gap. The notation > 1h means
that the instances could not be solved to the gap tolerance within the 1-hour time limit. In
bold are the times for which our approach is strictly faster then the three other approaches.
Experiments in Coté et al. (2011) were run on a 2.4 GHz Dual AMD Opteron Processor 250
with 3 GB of RAM using CPLEX 10.0. Experiments in Coté et al. (2010) were performed
on a 2.3GHz AMD Opteron with 3GB of memory using CPLEX 10.1.1.

These results show that the grammar-based column generation method is competitive

18

Table 3: Comparison with Demassey et al. (2006) approach

Root node Branch-and-Price

NbA Time(s) NbIts NbCols NbS(0.01%) Time(s) NbS(1%)

Grammar-based CG

1 0.1 10 257 5 62 10
2 0.2 16 601 6 100 9
3 0.6 20 975 6 2074 8
4 1.1 25 1321 5 2096 9
) 3.0 46 2321 0 > 2h 10
6 4.0 47 2457 9 915 10
7 6.6 47 3117 5 2426 9
8 8.3 62 3459 7 2163 10
9 9.6 62 3626 5 1886 7
10 9.9 43 3405 6 3754 8
Demassey et al. (2006) CG
1 0.4 19 889 8 144 —
2 3.7 48 2340 8 394 —
3 2.0 52 2550 4 1592 —
4 12.5 103 5063 0 > 2h —
5 6.2 86 4288 0 > 2h —
6 13.8 130 6493 0 > 2h —
7 18.4 137 6839 0 > 2h —
8 25.4 155 7736 0 > 2h —
9 25.9 155 7741 0 > 2h —
10 42.0 179 8974 0 > 2h —

19

Table 4: Comparison between approaches based on formal languages on instances with one
and two work-activities-CPU time(s)

No. G-BCG IPRM IPGM IGM

One work-activity

1 0.02 1.03 7.42 0.26
2 373.01 40.09 > 1h 110.88
3 3.32 64.64 > 1h 75.25
4 1.78 46.39 1850.38 2.75
5 0.13 14.03 322.57 0.48
6 0.03 3.28 130.21 0.34
7 1.53 5.99 1662.75 2.71
8 30.75 131.77 > 1h 2642.12
9 1.87 16.14 1015.10 1.18
10 0.84 20.22 1313.28 0.80
Two work-activities
1 0.27 228.07 28264 1.27
2 3.51 2870.20 1952.58 4.12
3 13.63 1541.15 > 1h 81.91
4 25.66 169.96 > 1h 16.27
5] 0.32 > 1h > 1h 2.59
6 6.98 1288.56 > 1h 51.16
7 1.88 29.94 > 1h 0.60
8 23.30 >1h 325.08 36.20
9 > 1h > 1h > 1h > 1h
10 0.97 1108.23 > 1h 4.99

20

with the existing approaches based on formal languages, at least for problem instances with
up to two work-activities. While it can solve to near optimality many instances involving up
to ten work-activities, as shown in Table 3, our B&P algorithm is generally outperformed
by the implicit grammar-based model from Co6té et al. (2010) on instances from three to ten
work-activities. This is only mildly surprising, since the implicit grammar-based model from
Coté et al. (2010) totally avoids symmetry issues and does not suffer from the growth in the
number of employees, contrary to our B&P algorithm. The implicit grammar-based model
cannot, however, deal with personalized multi-activity shift scheduling problems. We now

present computational results on such problems.

4.2. Problem Instances From Lequy et al. (2009)

This section presents computational results on a personalized multi-activity shift scheduling
problem introduced by Lequy et al. (2009) under the name multi-activity assignment prob-
lem. Two sets of instances are available for this problem: results on the first set are published
in Lequy et al. (2009), while results on the second set are still unpublished, but were made

available to us by the authors. These results are obtained from experiments performed on an

IntelCore™2 C'PU 6700 clocked at 2.66GHz with 4GB RAM using the Xpress-MP solver.
Problem Definition
Given:

e a planning horizon divided into 15-minute periods;

e for each work-activity;

— the required number of employees at each period;
— the undercovering and overcovering costs;

— its minimum and maximum durations;
e for each available employee;

— the list of pre-assigned work-pieces (a work-piece is defined by a starting time and

a duration);

— the list of work-activities for which the employee is qualified;

21

the problem is to fill each work-piece with a sequence of activities such that:
e cach employee can only be assigned to work-activities for which she is qualified;
e the minimum and maximum work-activity durations are satisfied;

while minimizing:
e the total undercovering and overcovering costs and

e the total transition costs (a cost is associated to every transition from one work-activity

to another within a work-piece).

Definition of the Grammar. The following presents the grammar used for this problem
for a given employee e and a given work-piece p. For the sake of clarity, as before, the
grammar is not stated in Chomsky normal form.

G = (% = (a; Vj € J.),N = (S, {Aj,A;,A;} Vje), PS),

where J. is the set of work-activities for employee e and a; is a period assigned to work-
activity j € J.. To define P, we use the following notations: —{uin,mas) restricts the subse-
quences generated with a given production to have a length between min and max periods;
lep is the length of work-piece p for employee e; min; and max; are, respectively, the mini-

mum and maximum durations of work-activity 7. P is then defined as follows:

RS
S Plpdey) AiA]
S T leplep) Aj if lep < max;
Aj 7 [ming,maz;] A;
- AKTA e s)

! /
Aj — Ajaj ‘ aj

For each class of instances characterized by the triplet D/E/A representing, respectively,
the number of days (D), employees (F) and activities (A), Table 5 presents | G? |, the
average number of productions in a grammar G“? in Chomsky normal form and NbNodes,

the average number of nodes in the corresponding DAG.

Computational Results. On the first set of instances, we compare our grammar-based
column generation (G-B CG) method with three approaches from Lequy et al. (2009): two
models solved exactly by the IP solver Xpress-MP and the rolling horizon heuristic method

22

Table 5: Average grammar (| G? |) and DAG (NbNodes) sizes for the problem instances
from Lequy et al. (2009) (each class counts 5 instances characterized by D/FE /A, D = number
of days, ' = number of employees, A = number of activities)

D/EJ/A | G“?| NbNodes

First set
7/20/5 60 7716
1/50/10 50 5471
7/50/7 202 19310
2/75/12 112 11722
Second set
7/20/5 24 2528
1/50/10 31 2501
7/50/7 40 3956
7/100/15 127 9158

based on column generation (Horizon CG). The first model is a multicommodity network
flow model (MC model), while the second is a reformulation of the first that yields fewer
variables (Block model). The heuristic method is based on a rolling horizon framework
where each time slice is solved with a column generation approach based on a shortest path
subproblem. Integer solutions are found with a rounding procedure that iteratively fixes
variables to integer values, each time reoptimizing the resulting LP relaxation by column
generation.

Table 6 presents the comparative times and solution values for our B&P algorithm and
the two exact approaches from Lequy et al. (2009) on the smallest instances, where No. is the
instance number and Value is the value of the solution found by the associated approach in
Time(s) seconds. The notation > 1h means that the optimality could not be proved within
the 1-hour CPU time limit. In these cases, Value is the best integer solution found within
this time limit. In bold are the times for which our approach is strictly faster than the two
other approaches. For the largest instances, Lequy et al. (2009) only reports times in seconds
to find the first integer solution with the Block model. Table 7 compares these times with the
time necessary for the B&P algorithm to find the first integer solution. For our approach, we
also present the value of the first integer solution (Val) found and the relative gap between
this solution and the best solution found for this instance (Gap(%) = 100(Zr — Zg)/Zr,

where Zp is the first integer solution found and Zpg is the best solution reported in Table

23

Table 6: Comparison with exact methods on the smallest instances of the first set of instances
of Lequy et al. (2009) problem

G-B CG MC model Block model
No. Value Time(s) Value Time(s) Value Time(s)

7 days, 20 employees, and 5 activities

1024 7220 14 7220 114 7220 17
1773 6345 9 6345 50 6345 17
2732 7420 94 7420 200 7420 21
4657 6400 2591 6400 129 6400 135
5568 T35 21 7535 92 7535 34
1 day, 50 employees, and 10 activities
1808 3270 >1h 3250 2681 3250 1190
5066 2440 947 2440 716 2440 294
5135 2580 103 2580 155 2580 98
5226 2725 34 2725 107 2725 93
8854 2800 >1h 2740 839 2740 321

8). The value of the first integer solution found with the Block model is not reported in
Lequy et al. (2009). In bold are the times for which our approach succeed in finding the
first integer solution faster. Table 8 presents the comparative results between our approach
and the Horizon CG method on all the instances. To perform a fair comparison with the
heuristic method, we stopped the B&P algorithm when a solution within a 1% relative gap
was found. > 1h means that this gap could not be achieved within the 1-hour CPU time
limit. In these cases, Value is the best integer solution found within the time limit. In bold
we highlight the times and values for the instances where our approach is strictly better than
Horizon CG. Note that the values in Lequy et al. (2009) differ from the ones reported here,
because Lequy et al. (2009) multiply the undercovering and overcovering costs for a period
by 15, the number of minutes in a period. The solutions obtained are, however, exactly the
same.

The results presented in Table 6 show that our approach is generally competitive with
the MC model and the Block model on smaller instances, except for a few instances, where
it is clearly outperformed. For larger instances, however, our method finds a first integer
solution much faster than the Block model, as shown in Table 7. The first integer solution

found by our method is also of extremely good quality. In Table 8, when compared to the

24

Table 7: Comparison with the Block model to find the first integer solution on the largest
instances of the first set of instances of Lequy et al. (2009) problem

No. G-B CG Block model
Time(s) Val Gap(%) Time(s)

7 days, 50 employees, and 7 activities
1007 1313 14115 0.00 16108
156 1787 13420 0.00 21271
237 1439 13610 0.15 16050
4369 1530 13675 0.00 25029
5216 1811 14800 0.00 13020

2 days, 75 employees, and 12 activities
1855 1504 6325 2.21 18685
2106 947 6525 0.00 15400
2435 734 6050 0.00 3511
4225 864 6270 0.24 18584
9863 624 5870 0.00 19216

heuristic method Horizon CG, our method is not competitive in terms of CPU times, but
for 16 out of 20 instances, it finds a better solution, still in reasonable time.

Table 9 compares our approach with the Horizon C'G heuristic method on the second
set of instances. As in Table 8, No. is the instance number and Value is the value of the
solution found by the associated approach in Time(s) seconds. For the G-B CG approach,
we stopped when a solution within a 1% relative gap was found. No time limit was applied
for these instances. As before, we highlight in bold the times and values for the instances
where our approach is strictly better than Horizon CG.

On the second class of instances, as the results in Table 9 show, our B&P algorithm
generally outperforms Horizon CG, not only in solution quality, but also in CPU times.
Indeed, for all instances, the B&P algorithm finds solution values equal or better than those
obtained by method Horizon C'G and it does so in less time for 17 out of the 20 instances.

When comparing the last two tables, we observe that our results on the two sets of
instances are very contrasting. Indeed, we observe two main differences between the two sets
of instances. First, each employee has more skills in the first set than in the second set, so
each of them is allowed to perform almost all work-activities. Second, the work-pieces are, on
average, of larger size in the first set than in the second set. These two characteristics yield

a greater number of feasible shifts for each employee in the first set than in the second set.

25

Table 8: Comparison with the Horizon CG approach on the first set of instances of Lequy
et al. (2009) problem

G-B CG Horizon CG
No. Value Time(s) Value Time(s)

7 days, 20 employees, and 5 activities

1024 7220 11 7265 10
1773 6360 9 6440 9
2752 7420 19 7420 17
4657 6400 2003 6415 11
5553 7600 15 7550 15
1 day, 50 employees, and 10 activities
1808 3270 >1h 3315 86
5066 2440 935 2565 237
5135 2580 8 2595 18
5226 2725 8 2740 19
8854 2800 >1h 2770 70
7 days, 50 employees, and 7 activities
1007 14115 1321 14265 363
156 13420 1793 13570 612
237 13610 > 1h 13590 333
4369 13675 1536 13890 473
5216 14800 1824 15040 543
2 days, 75 employees, and 12 activities
1855 6265 >1h 6185 1068
2106 6525 >1h 6630 878
2435 6050 >1h 6090 252
4225 6255 >1h 6410 655
9863 5870 >1h 6035 388

26

Table 9: Comparison with the Horizon C'G approach on the second set of instances of Lequy
et al. (2009) problem

G-B CG Horizon CG

No. Value Time(s) Value Time(s)

7 days, 20 employees, and 5 activities
102 2940 0.80 2940 1.99
1778 2770 0.76 2770 2.17
2752 3820 0.54 3820 1.37
4657 3210 0.61 3210 2.21
5558 3270 0.59 3270 1.51

1 day, 50 employees, and 10 activities
342 1875 26.70 1950 55.52
369 2315 146.08 2360 23.59
71 2050 1.26 2050 5.37
737 2065 53.23 2105 16.43
869 1875 41.67 1890 107.33

7 days, 50 employees, and 7 activities
5600 8440 59.49 8500 98.05
592 7345 33.03 7375 130.09
8597 7645 31.58 7705 126.58
9445 7900 14.67 7900 42.42
949 8155 44.19 8185 132.59

7 days, 100 employees, and 15 activities

530 15200 5818.36 15275 6667.41
102/ 15420 4602.99 15690 6889.64
2596 15855 10806.10 15855 5805.99
638/ 15250 2064.81 15400 4461.14
7862 15940 1391.95 16030 3545.54

27

Our B&P is clearly sensitive to the number of feasible shifts per employee. Also, since each
employee can perform almost all work-activities in the first set of instances, the employees

are almost identical, which yields symmetry issues.

4.3. Summary

The previous sections presented computational results comparing our B&P algorithm with
different approaches from Demassey et al. (2006), C6té et al. (2011), Lequy et al. (2009) and
Coté et al. (2010).

From a modeling point of view, the grammar-based column generation approach is
generic, as it can handle a variety of multi-activity shift scheduling problems, in particu-
lar personalized instances. By contrast, the column generation method of Demassey et al.
(2006) and the implicit grammar-based model of C6té et al. (2010) can also easily model
multi-activity instances, but the former was not extended to the personalized case, while the
latter simply cannot be extended to that case. We have also shown that the use of grammars
can easily adapt to the context introduced in Lequy et al. (2009), where the breaks, the shift
beginnings and the shift lengths are known a priori. The models and methods in Lequy et al.
(2009) were developped precisely for this problem and cannot be adapted easily to another
context.

From a computational point of view, the grammar-based column generation approach is
flexible enough to solve efficiently a variety of problem instances. Indeed, the B&P algorithm
provides integer solutions of good quality in reasonable computational time for almost all
tested instances. In particular, on personalized problem instances from Lequy et al. (2009),
it is competitive with a specialized heuristic method, showing superior performance on some
classes of instances.

Grammar-based modeling can, however, yield a very large DAG. Indeed, the number of
nodes in the graph associated with a grammar G can be, in the worst case, O(n? | G |) where
n is the sequence length and | G | is the number of productions in grammar G. Tables 2
and 5 show that the DAG size in our test cases are moderate and that performances do not

suffer from this aspect.

28

5. Conclusion

In this paper, we presented a B&P algorithm to solve different types of personalized multi-
activity shift scheduling problems. The algorithm solves the LP relaxation of the classical
set covering formulation with column generation. The pricing subproblem is modeled with a
context-free grammar and solved with a dynamic programming algorithm based on traversing
the DAG associated to the grammar. The B&P algorithm also integrates a branching rule
that preserves the structure of the pricing subproblem. Our computational experiments
show that the B&P algorithm is competitive with existing approaches from the literature.
Furthermore, it is flexible enough to address different types of problems. This characteristic
is mostly due to the expressiveness of grammars that enables to encode a large set of rules
over shifts.

There are, however, some limitations in the rules that can be expressed with a grammar.
For instance, in a case where it is possible, within a shift, to work for a consecutive number
of periods, rest for an unspecified number of periods and then work again, it would be
difficult with a context-free grammar to limit the total number of working periods. This
situation also occurs when planning a complete week of work where beginnings and ends
of shifts are not fixed a priori. To deal with this issue, one could use side constraints with
a grammar-based IP subproblem (see Coté et al. (2011)) to capture, in this case, the total
number of working periods. Another possibility is to model the subproblem as a constraint
programming satisfaction problem, such as in Fahle et al. (2002), to consider constraints
that cannot be dealt with by a grammar alone. As future work, it would be interesting to
study the introduction of resources within the subproblem dynamic programming algorithm;

such resources would allow, for instance, to count the number of working periods.

Acknowledgments

We wish to thank three anonymous referees whose comments have helped us to improve the
paper. This work was supported by a grant from the Fond québécois de recherche sur la
nature et les technologies. We would like to thank the following individuals: Frangois Guertin
for allowing us to use the OOBB framework and for his help during the developpement of the
algorithm; Serge Bisaillon for his support on many technical aspects throughout the progress

of this work; Quentin Lequy for providing us with his two sets of instances and his related

29

results.

References

Aykin, T. 1996. Optimal shift scheduling with multiple break windows. Management Science
42 591-602.

Barnhart, C., C.A. Hane, P.H. Vance. 2000. Using branch-and-price-and-cut to solve origin-

destination integer multicommodity flow problems. Operations Research 48 318-326.

Bechtolds, S., L. Jacobs. 1990. Implicit optimal modeling of flexible break assigments. Man-
agement Science 36 1339-1351.

Bouchard, M. 2004. Attribution des activités aux employés travaillant sur des quarts. M.Sc.

Thesis, Ecole Polytechnique de Montréal.

Coté, M.-C., B. Gendron, C.-G. Quimper L.-M. Rousseau. 2011. Formal languages for integer
programming modeling of shift scheduling problems. Constraints 16 54-76.

Coté, M.-C., B. Gendron, L.-M. Rousseau. 2010. Grammar-based integer programming
models for multi-activity shift scheduling. Tech. rep., Publication CIRRELT-2010-01.

Crainic, T.G., A. Frangioni, B. Gendron, F. Guertin. 2009. Oobb: An object-oriented
library for parallel branch-and-bound. Presented at the CORS/INFORMS International
Conference, Toronto, Canada, June 14-17 2009.

Dantzig, G. 1954. A comment on Edie’s traffic delay at toll booths. Journal of the Operations
Research Society of America 2 339-341.

Dantzig, G., P. Wolfe. 1960. Decomposition principle for linear programs. Operations Re-
search 8 101-111.

Demassey, S., G. Pesant, L.-M. Rousseau. 2006. A cost-regular based hybrid column gener-
ation approach. Constraints 11 315-333.

Desaulniers, G., J. Desrosiers, M. M. Solomon. 2005. Column Generation.. New York, NY :
Springer.

30

Edie, L. 1954. Traffic delays at toll booths. Journal of the Operations Research Society of
America 2 107-138.

Fahle, T., U. Junker, S. E. Karisch, N. Kohl, M. Sellmann, B. Vaaben. 2002. Constraint

programming based column generation for crew assignment. Journal of Heuristics 8 59-81.

Gent, [., W. Harvey, T. Kelsey. 2006. Groups and constraints: Symmetry breaking during
search. Principles and Practice of Constraint Programming - CP 2002, vol. 2470. 233-240.

Hopcroft, J., R. Motwani, J. D. Ullman. 2001. Introduction to Automata Theory, Languages,
and Computation. Addison Wesley.

Kadioglu, S., M. Sellmann. 2010. Grammar constraints. Constraints 15 117-144.

Katsirelos, G., N. Narodytska, T. Walsh. 2008. The weighted cfg constraint. Proc. 5th Int.
Conf. on Integration of AI and OR Techniques in Constraint Programming for Combina-

torial Optimization Problems - CPAIOR’08, LNCS 5015. 323-327.

Lequy, Q., M. Bouchard, G. Desaulniers, F. Soumis. 2009. Assigning multiple activities to
work shifts. Tech. rep., Les Cahiers du GERAD G-2009-86.

Loucks, J.S., F.R. Jacobs. 1991. Tour scheduling and task assignment of a heterogeneous

work force: a heuristic approach. Decision Sciences 22 719-739.

Liibbecke, M. E., J. Desrosiers. 2005. Selected topics un column generation. Operations

Research 53 1007-1023.

Menana, J., S. Demassey. 2009. Sequencing and counting with the multicost-regular con-
straint. Proc. 6th Int. Conf. on Integration of AI and OR Techniques in Constraint Pro-
gramming for Combinatorial Optimization Problems - CPAIOR’09, Springer-Verlag LNCS
5547. 178-192.

Omari, Z. 2002. Optimisation des pauses dans le probleme de fabrication des horaires avec

quarts de travail. M.Sc. Thesis, Ecole Polytechnique de Montréal.

Quimper, C.-G., L.-M. Rousseau. 2010. A large neighbourhood search approach to the
multi-activity shift scheduling problem. Journal of Heuristics 16 373-392.

31

Quimper, C.-G., T. Walsh. 2007. Decomposing global grammar constraint. Proc. of CP’07,
Springer-Verlag LNCS 4741 590-604.

Rekik, M., J.-F. Cordeau, F. Soumis. 2004. Using benders decomposition to implicitly model
tour scheduling. Annals of Operations Research 128 111-133.

Ritzman, L., L.J. Krajewski, M.J. Showalter. 1976. The disaggregation of aggregate man-
power plans. Management Science 22 1204-1214.

Vatri, E. 2001. Integration de la génération de quart de travail et de I'attribution d’activités.

M.Sc. Thesis, Ecole Polytechnique de Montréal.

32

